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NOMENCLATURE

A, condensing surface;

g,  gravitational acceleration;
I, correction factor;

latent heat of vaporization;
k,  thermal conductivity;

L, length;

i, dynamic viscosity;

p,  pressure;

g, condensation heat flux;
R, gasconstant;

p,  density;

o, condensation coefficient ;
T, temperature.

Subscripts
L, liquid;
s,  condensate surface at ligunid-vapor interface;
o, vapor.

INTRODUCTION
SATURATED potassium vapor was condensed on two different
vertical surfaces—nickel 200 and stainless steel 316 as
shown in Fig. 1. The test surface was a 4 x 4 in square and
0-75-in thick with two sets of three #-in dia. chromel-
alumel thermocouples—-in. in from either surface and on
the center plane. One set was 14-in down from the top and
the other 3-in up from the bottom, staggered near the
vertical centerline of the plate. Heat was removed at the
cold side of the plate by transfer to boiling water. The heat
flux was obtained by the temperature gradients determined
by both sets of couples and by the steam condensate
collected. The average of these three determinations was
used. The wall temperature was obtained by extrapolation
to the surface and the vapor temperature was measured by
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two thermocouples in the vapor space-—j-in and 4-in away
from the cold surface.

The tests reported here covered a range of absolute
pressure of 0-01 atm to 06 atm. To verify that the potassium
system was leak-tight the potassium was boiled and the
system purged for 21 h. It was then evacuated to 1072 in Hg
and atlowed to stand for 4 days. No detectable leakage was
observed.

ANALYSIS

The analysis of the data follows the procedure presented
by Sukhatme and Rohsenow [1]. Here the temperature
difference between the solid wall and the liquid at the
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liquid—vapor interface is calculated by the Nusselt equation:

q/A gplpy — p)K h;.] 3

-1, % [ (T, - T) Ly w

On the vapor side of the interface the heat transfer between
the saturated vapor and the liquid at the liquid-vapor
interface is given by the Hertz-Knudsen equation:

o pv p!
= P2 -2 p 2
4/ J(M)[ = TJ o @
where
Fal- q/A

2 \?
— | h
by (nRT,, iy

This equation may be simplified to the following form:

20 /LNY/Po D
T@2-9 <2nR <T3 T

Actually, as shown by Bornhorst [2], there is a temperature
profile in the vapor near the liquid—vapor interface. For the
conditions of the present tests this effect is negligible.

The test data of heat flux and temperatures were used to
determine ¢ in equation (3). Only those data for which
(p, — pJ)/p, is less than 0-25 are reported because equations
(2) and (3) are applicable only at the smaller magnitudes of
this quantity. The results are shown in Fig. 2 along with
results of various other experimenters. There is remarkable
agreement for the results of ¢ vs. p, for a wide variety of
liquid metals tested as discussed in [3]. Recent results
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obtained by Mills [9] for steam condensing at approxi-
mately 0-01 atm also straddle the line drawn through the
liquid metal data. An empirical expression for ¢ is

0-062
g =

,0:00384 < p, < 1-0 atm
ps @
o = 10, p, < 000384 atm

CONCLUSION

For the present film condensation of liquid metals may be
predicted for design purposes by using equations (1), (3)
and (4) provided (p, — p,)/p, < 0-25.
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NOMENCLATURE
area;
absorption factor, fraction of radiation leaving the
node i and being absorbed by the node j;
specific heat [Ws/kgdegK];
thermal conductance [W/degK];
“skin”’ scale factor s/s*;
“inner” scale factor L/I*;
temperature ratio T/T*;
thermal contact coefficient [W/degK m?];
length;
power dissipated in a node [W];
absorbed heat flux [W/m?];
absorbed heat [W];
ratio of absorbed heat fluxes g/g*;
.» radiation factor between the node i and the node j
gAgB;;
skin thickness;
time ;
temperature [degK];
volume;
directions tangential to the skin;
direction normal to the skin.
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Greek symbols
o, absorptivity for sun- or lamp-radiation;
& emissivity ;
4,  conductivity [W/degK m];
p,  density [kg/m3];
a, constant of Stefan-Bolzmann;
@, incident heat flux [W/m?].

Subscripts
a, area (conduction across an interface);
i, of node i;
Js of node j;

ij,  from node i to node j;

Jjs,  from node j to space;

m,  material (conduction within a material);
n, normal (to the skin);

t, tangential (to the skin).

Superscripts
* small model ;
i skin.

INTRODUCTION

WiTH the development of more powerful launching vehicles
the satellites or spacecraft become larger and larger. Up to
now it has been necessary to let the test facilities grow in
the same proportion. The laws of thermal similitude were
established in the hope that it would be possible to verify
or determine the thermal modelt of a spacecraft after having
carried out a test only on a small scale model} of this space-
craft, because that would permit the use of smaller test
chambers.

But treating thermal scale modeling of spacecraft from

1 The term “thermal model” means the thermal mathe-
matical model, i.e. the table containing the factors in the
heat balance equation [equation(1.1)].

t The term ‘“‘scale model” means a smaller physical
version of a spacecraft.



